- (a) Diagram 1 shows a right angled triangle, where the line OA has equation 3x - 2y = 0.
 - (i) Show that $\tan a = \frac{3}{2}$.
 - (ii) Find the value of sina.

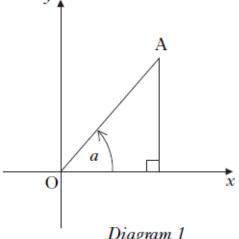


Diagram 1

(b) A second right angled triangle is added as shown in Diagram 2.

The line OB has equation 3x - 4y = 0.

Find the values of $\sin b$ and $\cos b$.

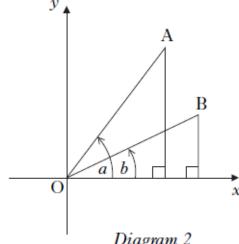
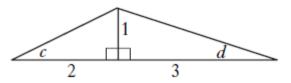


Diagram 2


(c) (i) Find the value of sin(a - b).

(ii) State the value of $\sin(b-a)$.

4

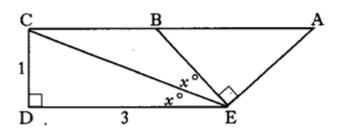
4

The diagram shows two right-angled triangles with angles c and d marked as shown.

(a) Find the exact value of $\sin(c+d)$.

4

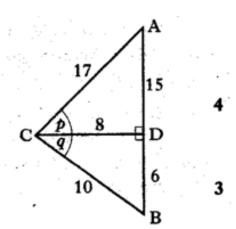
- (b) (i) Find the exact value of $\sin 2c$.
 - (ii) Show that $\cos 2d$ has the same exact value.


4

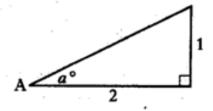
Solve the equation $\cos 2x^{\circ} + 2\sin x^{\circ} = \sin^2 x^{\circ}$ in the interval $0 \le x < 360$.

5

In the diagram angle DEC = angle CEB = x° and angle CDE = angle BEA = 90°. CD = 1 unit; DE = 3 units.


By writing angle DEA in terms of x° , find the exact value of $\cos(D\hat{E}A)$.

7


Triangles ACD and BCD are right-angled at D with angles p and q and lengths as shown in the diagram.

- (a) Show that the exact value of $\sin(p+q)$ is $\frac{84}{85}$.
- (b) Calculate the exact values of:
 - (i) $\cos(p+q)$;
 - (ii) tan(p+q).

The diagram shows a right-angled triangle with height 1 unit, base 2 units and an angle of a° at A.

- (a) Find the exact values of:
 - (i) sin a °;
 - (ii) sin 2a°.
- (b) By expressing $\sin 3a^{\circ}$ as $\sin (2a + a)^{\circ}$, find the exact value of $\sin 3a^{\circ}$.

Solve the equation $\sin x^{\circ} - \sin 2x^{\circ} = 0$ in the interval $0 \le x \le 360$.