A curve has equation $y = 3x^2 - x^3$.

(a) Find the coordinates of the stationary points on this curve and determine their nature.

6

(b) State the coordinates of the points where the curve meets the coordinate axes and sketch the curve.

2

A curve has equation $y = x^4 - 2x^3 + 5$.

Find the equation of the tangent to this curve at the point where x = 2.

4

The point P (5, 12) lies on the curve with equation $y = x^2 - 4x + 7$.

What is the gradient of the tangent to this curve at P?

- A 2
- B 6
- C 12
- D 13

What is the gradient of the tangent to the curve with equation $y = x^3 - 6x + 1$ at the point where x = -2?

- A -24
- B 3
- C 5
- D 6

A function f is defined on the domain $0 \le x \le 3$ by $f(x) = x^3 - 2x^2 - 4x + 6$.

Determine the maximum and minimum values of f.

If $y = 3x^{-2} + 2x^{\frac{3}{2}}$, x > 0, determine $\frac{dy}{dx}$.

- A $-6x^{-3} + \frac{4}{5}x^{\frac{5}{2}}$
- B $-3x^{-1} + 3x^{\frac{1}{2}}$
- C $-6x^{-3} + 3x^{\frac{1}{2}}$
- D $-3x^{-1} + \frac{4}{5}x^{\frac{5}{2}}$

A tangent to the curve with equation $y = x^3 - 2x$ is drawn at the point (2, 4). What is the gradient of this tangent?

- A 2
- B 3
- C 4
- D 10

A function f is defined on the set of real numbers by $f(x) = (x-2)(x^2+1)$.

- (a) Find where the graph of y = f(x) cuts:
 - (i) the x-axis;
 - (ii) the y-axis.

(b) Find the coordinates of the stationary points on the curve with equation y = f(x) and determine their nature.

2

- (c) On separate diagrams sketch the graphs of:
 - (i) y = f(x);
 - (ii) y = -f(x).

If $f(x) = \frac{1}{\sqrt[5]{x}}$, $x \neq 0$, what is f'(x)?

- $A -\frac{1}{5}x^{-\frac{6}{5}}$
- $B -\frac{1}{5}x^{-\frac{4}{5}}$
- C $-\frac{5}{2}x^{-\frac{7}{2}}$
- D $-\frac{5}{2}x^{-\frac{3}{2}}$

The derivative of a function f is given by $f'(x) = x^2 - 9$.

Here are two statements about f:

- (1) f is increasing at x = 1;
- (2) f is stationary at x = -3.

Which of the following is true?

- A Neither statement is correct.
- B Only statement (1) is correct.
- C Only statement (2) is correct.
- D Both statements are correct.

A curve has equation $y = 5x^3 - 12x$.

What is the gradient of the tangent at the point (1, -7)?

- A –7
- В -5
- C 3
- D 5

What is the derivative of $\frac{1}{4x^3}$, $x \neq 0$?

- A $\frac{1}{12x^2}$
- $B \frac{1}{12x^2}$
- $C = \frac{4}{x^4}$
- $D -\frac{3}{4x^4}$