Integration to find the Area

1. The parabola shown crosses the x-axis at $(0,0)$ and $(4,0)$, and has a maximum at $(2,4)$.

The shaded area is bounded by the parabola, the x-axis and the lines $x=2$ and $x=k$.

(a) Find the equation of the parabola.
(b) Hence show that the shaded area, A,

Calculate the shaded area enclosed between the
2. parabolas with equations $y=1+10 x-2 x^{2}$ and $y=1+5 x-x^{2}$.

3. The diagram shows a sketch of the graphs of $y=5 x^{2}-15 x-8$ and $y=x^{3}-12 x+1$.
The two curves intersect at A and touch at B, i.e. at B the curves have a common tangent.

(a) (i) Find the x-coordinates of the point of the curves where the gradients are equal.
(ii) By considering the corresponding y-coordinates, or otherwise, distinguish geometrically between the two cases found in part (i).
(b) The point A is $(-1,12)$ and B is $(3,-8)$.

Find the area enclosed between the two curves.

