Solving Trigonometric Equations

- 1. Solve the equation $3\cos 2x^{\circ} + \cos x^{\circ} = -1$ in the interval $0 \le x \le 360$.
- 2. The diagram shows an isosceles triangle PQR in which PR = QR and angle PQR = x° .
 - (a) Show that $\frac{\sin x^{\circ}}{p} = \frac{\sin 2x^{\circ}}{r}$.
 - (b) (i) State the value of x° when p = r.
 - (ii) Using the fact that p = r, solve the equation in (a) above, to justify your stated value of x° .

- 3. If $f(a) = 6\sin^2 a \cos a$, express f(a) in the form $p\cos^2 a + q\cos a + r$. Hence solve, correct to three decimal places, the equation $6\sin^2 a - \cos a = 5$ for $0 \le a \le \pi$.
- 4. (a) Solve the equation $\sin 2x^{\circ} \cos x^{\circ} = 0$ in the interval $0 \le x \le 180$.
 - (b) The diagram shows parts of two trigonometric graphs, $y = \sin 2x^{\circ}$ and $y = \cos x^{\circ}$.

Use your solutions in (*a*) to write down the coordinates of the point P.

4

5

- Functions f and g are defined on suitable domains by $f(x) = \sin(x^{\circ})$ and g(x) = 2x.
 - (a) Find expressions for:
 - (i) f(g(x));
 - (ii) g(f(x)).
 - (b) Solve 2f(g(x)) = g(f(x)) for $0 \le x \le 360$.
- 6. Solve $2 \sin 3x^{\circ} 1 = 0$ for $0 \le x \le 180$.

7. Solve the equation $2\cos^2 x = \frac{1}{2}$, for $0 \le x \le \pi$.

3

4

- 8. Solve the equation $2\sin\left(2x \frac{\pi}{6}\right) = 1$, $0 \le x < 2\pi$.
- $9. \qquad f(x) = 2\cos x^{\circ} + 3\sin x^{\circ}.$
 - (a) Express f(x) in the form $k\cos(x-\alpha)^\circ$ where k>0 and $0\leq\alpha<360$. (4)
 - (b) Hence solve algebraically f(x) = 0.5 for $0 \le x < 360$. (3)
- 10. The function f is defined by $f(x) = 2\cos x^{\circ} 3\sin x^{\circ}$.
 - (a) Show that f(x) can be expressed in the form $f(x) = k\cos(x+\alpha)^{\circ}$ where k > 0 and $0 \le \alpha < 360$, and determine the values of k and α . (4)
 - (b) Hence find the maximum and minimum values of f(x) and the values of x at which they occur, where x lies in the interval $0 \le x < 360$. (4)
 - (c) Write down the minimum value of $(f(x))^2$. (1)
- 11. Solve the equation $2 \sin x^{\circ} 3 \cos x^{\circ} = 2.5$ in the interval $0 \le x < 360$.