The concentration of the pesticide, Xpesto, in soil can be modelled by the equation

$$P_t = P_0 e^{-kt}$$

where:

- P<sub>0</sub> is the initial concentration;
- P<sub>t</sub> is the concentration at time t;
- t is the time, in days, after the application of the pesticide.
- (a) Once in the soil, the half-life of a pesticide is the time taken for its concentration to be reduced to one half of its initial value.

If the half-life of *Xpesto* is 25 days, find the value of *k* to 2 significant figures.

(b) Eighty days after the initial application, what is the percentage decrease in concentration of Xpesto?

The graph of  $log_3$  y plotted against x is a line through the origin with gradient 2, as shown.



Express y in terms of x.

4

3

- A y = 2x
- B y = 9x
- C v = 6
- D  $y = 9^x$

Simplify  $\frac{\log_b 9a^2}{\log_b 3a}$ , where a > 0 and b > 0.

- A 2
- B 3a
- C  $\log_b 3a$
- D  $\log_{b}(9a^{2}-3a)$

The diagram shows the curves with equations  $y = 4^x$  and  $y = 3^{2-x}$ .



The graphs intersect at the point T.

- (a) Show that the x coordinate of T can be written in the form  $\frac{\log_a p}{\log_a q}$ , for all a > 1.
- (b) Calculate the y coordinate of T.

Variables x and y are related by the equation  $y = kx^n$ .

The graph of  $\log_2 y$  against  $\log_2 x$  is a straight line through the points (0, 5) and (4, 7), as shown in the diagram.

Find the values of k and n.



6