What is the remainder when $x^3 + 3x^2 - 5x - 6$ is divided by (x - 2)?

- A 0
- B 3
- C 4
- D 8
- (a) Given that (x-1) is a factor of $x^3 + 3x^2 + x 5$, factorise this cubic fully. 4
- (b) Show that the curve with equation

$$y = x^4 + 4x^3 + 2x^2 - 20x + 3$$

has only one stationary point.

Find the *x*-coordinate and determine the nature of this point.

- (a) (i) Show that (x-4) is a factor of $x^3 5x^2 + 2x + 8$.
 - (ii) Factorise $x^3 5x^2 + 2x + 8$ fully.

(iii) Solve
$$x^3 - 5x^2 + 2x + 8 = 0$$
.

- (a) (i) Show that (x 1) is a factor of $f(x) = 2x^3 + x^2 8x + 5$.
 - (ii) Hence factorise f(x) fully. 5
- (b) Solve $2x^3 + x^2 8x + 5 = 0$.

The diagram shows the graph with equation $y = k(x-1)^2(x+t)$.

What are the values of k and t?

	\boldsymbol{k}	t
A	-2	-5
В	-2	5
C	2	-5
D	2	5

2.
$$f(x) = x^3 - x^2 - 5x - 3$$
.

- (a) (i) Show that (x + 1) is a factor of f(x).
 - (ii) Hence or otherwise factorise f(x) fully.
- (b) One of the turning points of the graph of y = f(x) lies on the x-axis. Write down the coordinates of this turning point.

5

1

Functions f, g and h are defined on the set of real numbers by

•
$$f(x) = x^3 - 1$$

•
$$g(x) = 3x + 1$$

•
$$h(x) = 4x - 5$$
.

2

1

5

1

- (a) Find g(f(x)).
- (b) Show that $g(f(x)) + xh(x) = 3x^3 + 4x^2 5x 2$.
- (c) (i) Show that (x-1) is a factor of $3x^3 + 4x^2 5x 2$.
 - (ii) Factorise $3x^3 + 4x^2 5x 2$ fully.
- (d) Hence solve g(f(x)) + xh(x) = 0.

The diagram shows the graph of a cubic.

What is the equation of this cubic?

$$A \quad y = -x(x+1)(x-2)$$

B
$$y = -x(x-1)(x+2)$$

$$C \quad y = x(x+1)(x-2)$$

D
$$y = x(x-1)(x+2)$$