- A sequence is defined by the recurrence relation $u_{n+1} = 3u_n + 4$, with $u_0 = 1$. Find the value of u_2 .
 - A 7
 - B 10
 - C 25
 - D 35

- (a) A sequence is defined by $u_{n+1} = -\frac{1}{2}u_n$ with $u_0 = -16$. Write down the values of u_1 and u_2 .
- (b) A second sequence is given by 4, 5, 7, 11,
 It is generated by the recurrence relation v_{n+1} = pv_n + q with v₁ = 4.
 Find the values of p and q.
- (c) Either the sequence in (a) or the sequence in (b) has a limit.
 - (i) Calculate this limit.
 - (ii) Why does the other sequence not have a limit?

A sequence is defined by the recurrence relation $u_{n+1} = 2u_n + 3$ and $u_0 = 1$. What is the value of u_2 ?

- A 7
- B 10
- C 13
- D 16

A sequence is generated by the recurrence relation $u_{n+1} = \frac{1}{4}u_n + 7$, with $u_0 = -2$. What is the limit of this sequence as $n \to \infty$?

- A $\frac{1}{28}$
- $B = \frac{28}{5}$
- $C = \frac{28}{3}$
- D 28

A sequence of numbers is defined by the recurrence relation $U_{n+1}=pU_n+\ q$, where p and q are constants.

- (a) Given that $U_0 = 3$, $U_1 = 2$ and $U_2 = -2$, find algebraically, the values of p and q. (3)
- (b) Hence find U_3 . (1)

A sequence is generated by the recurrence relation $u_{n+1} = 0.7u_n + 10$. What is the limit of this sequence as $n \to \infty$?

- A $\frac{100}{3}$
- B $\frac{100}{7}$
- $C = \frac{17}{100}$
- D $\frac{3}{10}$

$$u_{n+1} = 0.3u_n + 6$$
 with $u_{10} = 10$.

What is the value of u_{12} ?

- A 6.6
- B 7.8
- C 8·7
- D 9.6

A sequence is generated by the recurrence relation $u_{n+1} = 0.4u_n - 240$.

What is the limit of this sequence as $n \to \infty$?

- A 800
- B 400
- C 200
- D 400

A sequence is defined by the recurrence relation

$$u_{n+1} = \frac{1}{4}u_n + 16, \ u_0 = 0.$$

(a) Calculate the values of u_1 , u_2 and u_3 .

Four terms of this sequence, u_1 , u_2 , u_3 and u_4 are plotted as shown in the graph.

As $n \to \infty$, the points on the graph approach the line $u_n = k$, where k is the limit of this sequence.

- (b) (i) Give a reason why this sequence has a limit.
 - (ii) Find the exact value of k.

3

A sequence of numbers is defined by the recurrence relation $U_{n+1} = kU_n + c$, where k and c are constants.

Given that
$$U_0 = 10$$
, $U_1 = 14$ and $U_2 = 17 \cdot 2$, find algebraically, the values of k and c . (3)

A sequence is defined by the recurrence relation $U_{n+1} = 0.8 U_n + 3$.

(a) Explain why this sequence has a limit as
$$n \to \infty$$
. (1)

- (b) Find the limit of this sequence. (2)
- (c) Taking $U_0 = 10$ and L as the limit of the sequence, find n such that

$$L - U_n = 2.56 \tag{3}$$

A sequence is defined by the recurrence relation $U_{n+1} = aU_n + b$, where a and b are constants.

(a) Given that
$$U_0 = 4$$
 and $b = -8$, express U_2 in terms of a . (2)

(b) Hence find the value of
$$a$$
 when $U_2 = 88$ and $a > 0$. (3)

(c) Given that
$$S_3 = U_1 + U_2 + U_3$$
, calculate the value of S_3 . (2)

A recurrence relationship is defined as $U_{n+1} = 0.5 U_n + 16$ with $U_0 = 128$

(a) Find the limit
$$(L)$$
 of this sequence. (1)

(b) Given that
$$U_n - L = 6$$
, find n . (3)